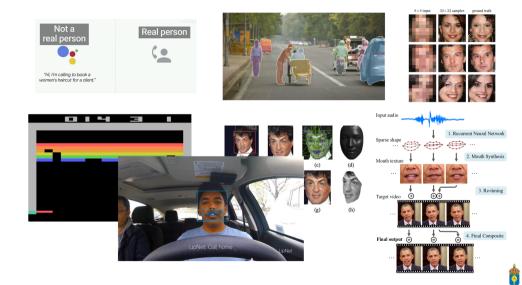
Possibilities and Challenges for Artificial Intelligence in Military Applications

Peter Svenmarck, Linus Luotsinen, Mattias Nilsson and Johan Schubert

May 31, 2018

DL Boosts Performance in a Large Number of Applications



Potential Advantages of DL

- Efficiency:
 - Reduced development costs and development time
- Availability:
 - No programming skills required (software 2.0)
- Complexity:
 - Computer generated programs perform better than any human implementation
- Creativity:
 - Computers provide creative solutions to problems that humans can study and learn from
- Objective:
 - Computers are unbiased and fair whereas humans can be corrupt, unfair, racist and so on

Examples of Military AI-Applications

- Maritime surveillance
 - Unsupervised machine learning
 - Low probability events are anomalies
- Underwater mine warfare
 - Supervised machine learning
 - Image classification

- Intrusion detection
 - Supervised machine learning
 - Signature classification
- Penetration testing
 - Deep reinforcement learning
 - Planning of mitigation strategies

Challenges

- Optimization:
 - Local vs. global
- Generalization:
 - Under-fitting vs. over-fitting
- Hyper-parameter tuning:
 - Meta-learning
- Production grade AI:
 - Reproducibility
 - Version control for data
 - Power efficiency
 - Real-time processing
 - Up to date after deployment
- Al-compute and data centers

- Black-box:
 - Transparency, interpretability, explainability
- Vulnerabilities:
 - Adversarial examples, transfer learning and data poisoning
- Data:
 - Learning with limited data

Transparency, Interpretability, and Explainability

- Types of need
 - Trust
 - Causal relationships
 - Generalizability
 - Inform decision making
 - Fairness

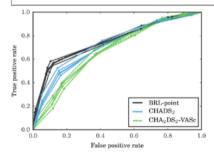
Approaches for Transparency

- Interpretable models
 - Linear models, Rule-based systems, Decision trees
 - Predictability, Decomposability, Training method
- Explanations
 - Textual or visual
 - Perceived beliefs, desires, and intentions
 - Abnormality, Preferences, Norms, Recency, Controllability
 - Contrast relative other recommendation
 - Selective
 - Conversations for transfer of knowledge

Examples of Interpretable Models

- Bayesian Rule List
- Stroke Prediction

if hemiplegia and age > 60 then stroke risk 58.9% (53.8%–63.8%) else if cerebrovascular disorder then stroke risk 47.8% (44.8%–50.7%) else if transient ischaemic attack then stroke risk 23.8% (19.5%–28.4%) else if occlusion and stenosis of carotid artery without infarction then stroke risk 15.8% (12.2%–19.6%) else if altered state of consciousness and age > 60 then stroke risk 16.0% (12.2%–20.2%) else if age \leq 70 then stroke risk 4.6% (3.9%–5.4%) else stroke risk 8.7% (7.9%–9.6%)



Examples of Feature Visualization: Activation maximation

- Semantic information in images is spread out
- Multifaceted features
- Synthesize images with GAN for
 - Coherent global structure
 - Realistic looking colors
 - Sharpness

Examples of Feature Visualization: DNN explanation

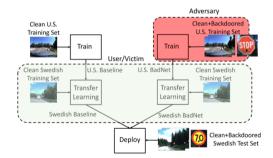
- Highlight discriminative features or regions
- Sensitivity methods are vulnerable to occlusion
- Relevance propagation considers both presence and reaction



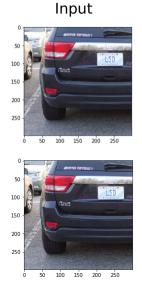
Vulnerabilities

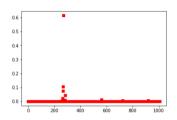
- Adversarial examples:
 - It is easy to adjust the input so that the classification system fails completely
 - The main idea is to use SGD and back-prop as usual, but instead of updating weights the input signal is updated
 - When input dimensionality is large then the changes are often imperceptible
 - Black-box attacks are also possible

- Transfer learning:
 - The idea is to exploit hidden backdoors in pre-trained DNNs

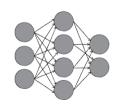


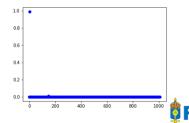
Example 1: Manipulation of Input Signal



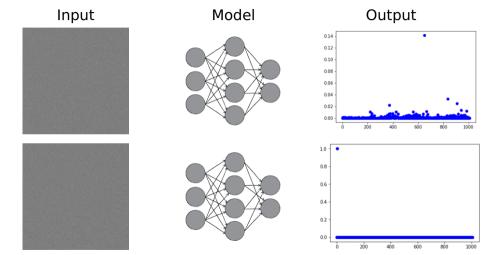


Output





Example 2: Manipulation of Input Signal



FOI

Example 3: Manipulation of Input Signal

Vulnerabilities

- Even though this is a hot research area, there are no solutions to these problems
- Defence mechanisms exists but they do not always work
- Recommendation:
 - Always protect the model, its architecture and weights
 - Minimize the possibility for outsiders to interact with the model
 - Be careful when using transfer learning
 - When reusing training data, always check for poisoning

Learning with Limited Data

- Data for military ML-applications is limited:
 - Data is collected but typically not for ML-purposes
 - Data is not easily shared
- Techniques that can be used to learn with limited data:
 - Transfer learning
 - Generative Adversarial Networks (GANs)
 - Modeling and simulation

Conclusions

- There is currently no silver bullet for the challenges highlighted in this talk
- But, the Al-field is moving fast:
 - Partial solutions continues to emerge
 - Keeping up-to-date is a challenge
- More AI-applications are reaching human or even superhuman performance
- Many Al-services are now available as products on the cloud (transcribing, sentiment analysis, face recognition, etc.)
- Deep learning solves domain specific tasks only:
 - Other breakthroughs are needed for AGI

Thanks for listening

This work was supported by the FOI research project "AI for decision support and cognitive systems", which is funded by the R&D programme of the Swedish Armed Forces.

